Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 48: 47-60, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36084813

RESUMO

INTRODUCTION: The domestication bottleneck has reduced genetic diversity inwheat, necessitating the use of wild relatives in breeding programs. Wild tetraploid wheat are widely used in the breeding programs but with morphological characters, it is difficult to distinguish these, resulting in misclassification/mislabeling or duplication of accessions in the Gene bank. OBJECTIVES: The study aims to exploreGenotyping by sequencing (GBS) to characterize wild and domesticated tetraploid wheat accessions to generate a core set of accessions to be used in the breeding program. METHODS: TASSEL-GBS pipeline was used for SNP discovery, fastStructure was used to determine the population structure and PowerCore was used to generate a core sets. Nucleotide diversity matrices of Nie's and F-statistics (FST) index were used to determine the center of genetic diversity. RESULTS: We found 65 % and 47 % duplicated accessions in Triticum timopheevii and T. turgidum respectively. Genome-wide nucleotide diversity and FST scan uncovered a lower intra and higher inter-species differentiation. Distinct FST regions were identified in genomic regions belonging to domestication genes: non-brittle rachis (Btr1) and vernalization (VRN-1).Our results suggest that Israel, Jordan, Syria, and Lebanonas the hub of genetic diversity of wild emmer;Turkey, and Georgia for T. durum; and Iraq, Azerbaijan, and Armenia for theT. timopheevii. Identified core set accessions preserved more than 93 % of the available genetic diversity. Genome wide association study (GWAS) indicated the potential chromosomal segment for resistance to leaf rust in T. timopheevii. CONCLUSION: The present study explored the potential of GBS technology in data reduction while maintaining the significant genetic diversity of the species. Wild germplasm showed more differentiation than domesticated accessions, indicating the availability of sufficient diversity for crop improvement. With reduced complexity, the core set preserves the genetic diversity of the gene bank collections and will aid in a more robust characterization of wild germplasm.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Tetraploidia , Melhoramento Vegetal , Nucleotídeos
2.
Nat Commun ; 13(1): 3044, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650212

RESUMO

The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Triticum/genética
3.
Front Plant Sci ; 9: 1665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487809

RESUMO

Aegilops tauschii (2n = 2x = 14, genome DD), also known as Tausch's goatgrass, is the D genome donor of bread or hexaploid wheat Triticum aestivum (2n = 2x = 42, AABBDD genome). It is a rich reservoir of useful genes for biotic and abiotic stress tolerance for wheat improvement. We developed a TILLING (Targeting Induced Local Lesions In Genomes) resource for Ae. tauschii for discovery and validation of useful genes in the D genome of wheat. The population, referred to as TILL-D, was developed with ethyl methanesulfonate (EMS) mutagen. The survival rate in M1 generation was 73%, out of which 22% plants were sterile. In the M2 generation 25% of the planted seeds showed phenotypic mutations such as albinos, chlorinas, no germination, variegated, sterile and partially fertile events, and 2,656 produced fertile M2 plants. The waxy gene was used to calculate the mutation frequency (1/70 kb) of the developed population, which was found to be higher than known mutation frequencies for diploid plants (1/89-1/1000 kb), but lower than that for a polyploid species (1/24-1/51 kb). The TILL-D resource, together with the newly published Ae. tauschii reference genome sequence, will facilitate gene discoveries and validations of agronomically important traits and their eventual fine transfer in bread wheat.

4.
BMC Plant Biol ; 12: 205, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23134614

RESUMO

BACKGROUND: Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. RESULTS: We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. CONCLUSION: The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability.


Assuntos
Diploide , Genoma de Planta/genética , Genômica/métodos , Mutagênese/genética , Triticum/genética , Metanossulfonato de Etila , Genes de Plantas/genética , Lignina/genética , Mutação/genética , Taxa de Mutação , Fenótipo , Densidade Demográfica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA